Sunday 12 February 2017

Gleitende Durchschnittliche Autokovarianz

2.1 Gleitende Durchschnittsmodelle (MA-Modelle) Zeitreihenmodelle, die als ARIMA-Modelle bekannt sind, können autoregressive Begriffe und gleitende Durchschnittsterme enthalten. In Woche 1 erlernten wir einen autoregressiven Term in einem Zeitreihenmodell für die Variable x t ist ein verzögerter Wert von x t. Beispielsweise ist ein autoregressiver Term der Verzögerung 1 x t-1 (multipliziert mit einem Koeffizienten). Diese Lektion definiert gleitende Durchschnittsterme. Ein gleitender Durchschnittsterm in einem Zeitreihenmodell ist ein vergangener Fehler (multipliziert mit einem Koeffizienten). Es sei n (0, sigma2w) überschritten, was bedeutet, daß die wt identisch unabhängig voneinander verteilt sind, jeweils mit einer Normalverteilung mit dem Mittelwert 0 und der gleichen Varianz. Das durch MA (1) bezeichnete gleitende Durchschnittsmodell der 1. Ordnung ist (xt mu wt theta1w) Das durch MA (2) bezeichnete gleitende Durchschnittsmodell der zweiten Ordnung ist (xt mu wt theta1w theta2w) Das gleitende Mittelmodell der q-ten Ordnung , Mit MA (q) bezeichnet, ist (xt mu wt theta1w theta2w dots thetaqw) Hinweis. Viele Lehrbücher und Softwareprogramme definieren das Modell mit negativen Vorzeichen vor den Begriffen. Dies ändert nicht die allgemeinen theoretischen Eigenschaften des Modells, obwohl es die algebraischen Zeichen der geschätzten Koeffizientenwerte und (nicht quadrierten) Ausdrücke in Formeln für ACFs und Abweichungen umwandelt. Sie müssen Ihre Software überprüfen, um zu überprüfen, ob negative oder positive Vorzeichen verwendet worden sind, um das geschätzte Modell korrekt zu schreiben. R verwendet positive Vorzeichen in seinem zugrunde liegenden Modell, wie wir hier tun. Theoretische Eigenschaften einer Zeitreihe mit einem MA (1) Modell Beachten Sie, dass der einzige Wert ungleich Null im theoretischen ACF für Verzögerung 1 ist. Alle anderen Autokorrelationen sind 0. Somit ist ein Proben-ACF mit einer signifikanten Autokorrelation nur bei Verzögerung 1 ein Indikator für ein mögliches MA (1) - Modell. Für interessierte Studierende, Beweise dieser Eigenschaften sind ein Anhang zu diesem Handout. Beispiel 1 Angenommen, dass ein MA (1) - Modell x t 10 w t .7 w t-1 ist. Wobei (wt overset N (0,1)). Somit ist der Koeffizient 1 0,7. Die theoretische ACF wird durch eine Plot dieser ACF folgt folgt. Die graphische Darstellung ist die theoretische ACF für eine MA (1) mit 1 0,7. In der Praxis liefert eine Probe gewöhnlich ein solches klares Muster. Unter Verwendung von R simulierten wir n 100 Abtastwerte unter Verwendung des Modells x t 10 w t .7 w t-1, wobei w t iid N (0,1) war. Für diese Simulation folgt ein Zeitreihen-Diagramm der Probendaten. Wir können nicht viel von dieser Handlung erzählen. Die Proben-ACF für die simulierten Daten folgt. Wir sehen eine Spitze bei Verzögerung 1, gefolgt von im Allgemeinen nicht signifikanten Werten für Verzögerungen nach 1. Es ist zu beachten, dass das Beispiel-ACF nicht mit dem theoretischen Muster des zugrunde liegenden MA (1) übereinstimmt, was bedeutet, dass alle Autokorrelationen für Verzögerungen nach 1 0 sein werden Eine andere Probe hätte eine geringfügig unterschiedliche Probe ACF wie unten gezeigt, hätte aber wahrscheinlich die gleichen breiten Merkmale. Theroretische Eigenschaften einer Zeitreihe mit einem MA (2) - Modell Für das MA (2) - Modell sind die theoretischen Eigenschaften die folgenden: Die einzigen Werte ungleich Null im theoretischen ACF sind für die Lags 1 und 2. Autokorrelationen für höhere Lags sind 0 , So zeigt ein Beispiel-ACF mit signifikanten Autokorrelationen bei Lags 1 und 2, aber nicht signifikante Autokorrelationen für höhere Lags ein mögliches MA (2) - Modell. Iid N (0,1). Die Koeffizienten betragen 1 0,5 und 2 0,3. Da es sich hierbei um ein MA (2) handelt, wird der theoretische ACF nur bei den Verzögerungen 1 und 2 Werte ungleich Null aufweisen. Werte der beiden Nicht-Autokorrelationen sind A-Kurve des theoretischen ACF. Wie fast immer der Fall ist, verhalten sich Musterdaten nicht ganz so perfekt wie die Theorie. Wir simulierten n 150 Beispielwerte für das Modell x t 10 w t .5 w t-1 .3 w t-2. Wobei wt iid N (0,1) ist. Die Zeitreihenfolge der Daten folgt. Wie bei dem Zeitreihenplot für die MA (1) Beispieldaten können Sie nicht viel davon erzählen. Die Proben-ACF für die simulierten Daten folgt. Das Muster ist typisch für Situationen, in denen ein MA (2) - Modell nützlich sein kann. Es gibt zwei statistisch signifikante Spikes bei Lags 1 und 2, gefolgt von nicht signifikanten Werten für andere Lags. Beachten Sie, dass aufgrund des Stichprobenfehlers das Muster ACF nicht genau dem theoretischen Muster entsprach. ACF für allgemeine MA (q) - Modelle Eine Eigenschaft von MA (q) - Modellen besteht im Allgemeinen darin, dass Autokorrelationen ungleich Null für die ersten q-Verzögerungen und Autokorrelationen 0 für alle Verzögerungen gt q existieren. Nicht-Eindeutigkeit der Verbindung zwischen Werten von 1 und (rho1) in MA (1) Modell. Im MA (1) - Modell für einen Wert von 1. Die reziproke 1 1 gibt den gleichen Wert für Als Beispiel, verwenden Sie 0.5 für 1. Und dann 1 (0,5) 2 für 1 verwenden. Youll erhalten (rho1) 0,4 in beiden Fällen. Um eine theoretische Einschränkung als Invertibilität zu befriedigen. Wir beschränken MA (1) - Modelle auf Werte mit einem Absolutwert von weniger als 1. In dem gerade angegebenen Beispiel ist 1 0,5 ein zulässiger Parameterwert, während 1 10,5 2 nicht. Invertibilität von MA-Modellen Ein MA-Modell soll invertierbar sein, wenn es algebraisch äquivalent zu einem konvergierenden unendlichen Ordnungs-AR-Modell ist. Durch Konvergenz meinen wir, dass die AR-Koeffizienten auf 0 sinken, wenn wir in der Zeit zurückgehen. Invertibilität ist eine Einschränkung, die in Zeitreihensoftware programmiert ist, die verwendet wird, um die Koeffizienten von Modellen mit MA-Begriffen abzuschätzen. Sein nicht etwas, das wir in der Datenanalyse überprüfen. Zusätzliche Informationen über die Invertibilitätsbeschränkung für MA (1) - Modelle finden Sie im Anhang. Fortgeschrittene Theorie Anmerkung. Für ein MA (q) - Modell mit einem angegebenen ACF gibt es nur ein invertierbares Modell. Die notwendige Bedingung für die Invertierbarkeit ist, daß die Koeffizienten solche Werte haben, daß die Gleichung 1- 1 y-. - q y q 0 hat Lösungen für y, die außerhalb des Einheitskreises liegen. R-Code für die Beispiele In Beispiel 1 wurde der theoretische ACF des Modells x t 10 w t aufgetragen. 7w t-1. Und dann n 150 Werte aus diesem Modell simuliert und die Abtastzeitreihen und die Abtast-ACF für die simulierten Daten aufgetragen. Die R-Befehle, die verwendet wurden, um den theoretischen ACF aufzuzeichnen, waren: acfma1ARMAacf (mac (0,7), lag. max10) 10 Verzögerungen von ACF für MA (1) mit theta1 0,7 lags0: 10 erzeugt eine Variable namens lags, die im Bereich von 0 bis 10 liegt (H0) fügt dem Diagramm eine horizontale Achse hinzu Der erste Befehl bestimmt den ACF und speichert ihn in einem Objekt Genannt acfma1 (unsere Wahl des Namens). Der Plotbefehl (der dritte Befehl) verläuft gegen die ACF-Werte für die Verzögerungen 1 bis 10. Der ylab-Parameter bezeichnet die y-Achse und der Hauptparameter einen Titel auf dem Plot. Um die Zahlenwerte der ACF zu sehen, benutzen Sie einfach den Befehl acfma1. Die Simulation und Diagramme wurden mit den folgenden Befehlen durchgeführt. (N150, list (mac (0.7))) Simuliert n 150 Werte aus MA (1) xxc10 addiert 10, um Mittelwert 10. Simulationsvorgaben bedeuten 0. Plot (x, typeb, mainSimulated MA (1) Acf (x, xlimc (1,10), mainACF für simulierte Probendaten) In Beispiel 2 wurde der theoretische ACF des Modells xt 10 wt. 5 w t-1 .3 w t-2 aufgetragen. Und dann n 150 Werte aus diesem Modell simuliert und die Abtastzeitreihen und die Abtast-ACF für die simulierten Daten aufgetragen. Die verwendeten R-Befehle waren acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 Plot (lags, acfma2, xlimc (1,10), ylabr, typh, main ACF für MA (2) mit theta1 0,5, (X, x) (x, x) (x, x, x, y) (1) Für interessierte Studierende sind hier Beweise für die theoretischen Eigenschaften des MA (1) - Modells. Variante: (Text (xt) Text (mu wt theta1 w) 0 Text (wt) Text (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Wenn h 1 der vorhergehende Ausdruck 1 w 2. Für irgendeinen h 2 ist der vorhergehende Ausdruck 0 Der Grund dafür ist, dass, durch Definition der Unabhängigkeit der wt. E (w k w j) 0 für beliebige k j. Da w w die Mittelwerte 0, E (w j w j) E (w j 2) w 2 haben. Für eine Zeitreihe, Wenden Sie dieses Ergebnis an, um den oben angegebenen ACF zu erhalten. Ein invertierbares MA-Modell ist eines, das als unendliches Ordnungs-AR-Modell geschrieben werden kann, das konvergiert, so daß die AR-Koeffizienten gegen 0 konvergieren, wenn wir unendlich zurück in der Zeit bewegen. Gut zeigen Invertibilität für die MA (1) - Modell. Dann setzen wir die Beziehung (2) für wt-1 in Gleichung (1) (3) ein (zt wt theta1 (z-therma1w) wt theta1z - theta2w) Zum Zeitpunkt t-2. Gleichung (2) wird dann in Gleichung (3) die Gleichung (4) für wt-2 ersetzen (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z - theta12z theta31w) Unendlich), erhalten wir das unendliche Ordnungsmodell (zt wt theta1 z - theta21z theta31z - theta41z Punkte) Beachten Sie jedoch, dass bei 1 1 die Koeffizienten, die die Verzögerungen von z vervielfachen (unendlich) in der Größe zunehmen, Zeit. Um dies zu verhindern, benötigen wir 1 lt1. Dies ist die Bedingung für ein invertierbares MA (1) - Modell. Unendlich Ordnung MA Modell In Woche 3, gut sehen, dass ein AR (1) Modell in ein unendliches order MA Modell umgewandelt werden kann: (xt - mu wt phi1w phi21w Punkte phik1 w Punkte sum phij1w) Diese Summation der Vergangenheit weißer Rauschbegriffe ist bekannt Als die kausale Darstellung eines AR (1). Mit anderen Worten, x t ist eine spezielle Art von MA mit einer unendlichen Anzahl von Begriffen, die in der Zeit zurückgehen. Dies wird als unendliche Ordnung MA oder MA () bezeichnet. Eine endliche Ordnung MA ist eine unendliche Ordnung AR und jede endliche Ordnung AR ist eine unendliche Ordnung MA. Rückruf in Woche 1, stellten wir fest, dass eine Anforderung für eine stationäre AR (1) ist, dass 1 lt1. Berechnen Sie die Var (x t) mit der kausalen Darstellung. Dieser letzte Schritt verwendet eine Grundtatsache über geometrische Reihen, die (phi1lt1) erforderlich sind, ansonsten divergiert die Reihe. Navigation4.2 Lineare stationäre Modelle für Zeitreihen, in denen die Zufallsvariable die Innovation genannt wird, weil sie den Teil der beobachteten Variablen darstellt, der aufgrund der vergangenen Werte nicht vorhersehbar ist. Das allgemeine Modell (4.4) geht davon aus, dass das Ausgangssignal eines linearen Filters ist, der die bisherigen Innovationen transformiert, dh einen linearen Prozess darstellt. Diese Linearitätsannahme basiert auf dem Wolds-Zerlegungstheorem (Wold 1938), das besagt, dass jeder diskrete stationäre Kovarianzprozess als Summe zweier nicht korrelierter Prozesse ausgedrückt werden kann, wobei er rein deterministisch ist und ein rein indeterministischer Prozess ist, der als linear geschrieben werden kann Summe des Innovationsprozesses: wo ist eine Folge von seriell unkorrelierten Zufallsvariablen mit null mittlerer und gemeinsamer Varianz. Voraussetzung für die Stationarität. Die Formulierung (4.4) ist eine endliche Reparametrisierung der unendlichen Darstellung (4.5) - (4.6) mit der Konstanten. Es wird üblicherweise in Form des durch den definierten Verzögerungsoperators geschrieben, der einen kürzeren Ausdruck ergibt: wobei die Verzögerungsoperatorpolynome und das Polynom bzw. das Polynom aufgerufen werden. Um eine Parameterredundanz zu vermeiden, gehen wir davon aus, dass es keine gemeinsamen Faktoren zwischen den Komponenten und den Komponenten gibt. Als nächstes werden wir die Handlung einiger Zeitreihen studieren, die von stationären Modellen mit dem Ziel entwickelt werden, die Hauptmuster ihrer zeitlichen Entwicklung zu bestimmen. Abbildung 4.2 enthält zwei Serien, die mit Hilfe des Genarma-Quantlets aus den folgenden stationären Prozessen generiert werden: Abbildung 4.2: Zeitreihen, die von Modellen erzeugt werden Erwartungsgemäß bewegen sich beide Zeitreihen um ein konstantes Niveau, ohne Änderungen der Varianz aufgrund der stationären Eigenschaft. Darüber hinaus ist dieses Niveau nahe dem theoretischen Mittel des Prozesses, und der Abstand jedes Punktes zu diesem Wert ist sehr selten außerhalb der Grenzen. Darüber hinaus zeigt die Entwicklung der Serie lokale Abweichungen vom Mittelwert des Prozesses, der als das mittlere Reversionsverhalten, das die stationären Zeitreihen charakterisiert, bekannt ist. Wir wollen die Eigenschaften der verschiedenen Prozesse genauer untersuchen, insbesondere die Autokovarianzfunktion, die die dynamischen Eigenschaften eines stochastischen stationären Prozesses erfasst. Diese Funktion hängt von den Maßeinheiten ab, so dass das übliche Maß für den Grad der Linearität zwischen den Variablen der Korrelationskoeffizient ist. Im Fall stationärer Prozesse ist der Autokorrelationskoeffizient bei Verzögerung, bezeichnet mit, als die Korrelation zwischen und definiert. Somit ist die Autokorrelationsfunktion (ACF) die Autokovarianzfunktion, die durch die Varianz standardisiert ist. Die Eigenschaften des ACF sind: Angesichts der Symmetrieeigenschaft (4.10) wird der ACF in der Regel durch ein Balkendiagramm an den nichtnegativen Verzögerungen dargestellt, das als einfaches Korrelogramm bezeichnet wird. Ein weiteres nützliches Werkzeug zur Beschreibung der Dynamik eines stationären Prozesses ist die partielle Autokorrelationsfunktion (PACF). Der partielle Autokorrelationskoeffizient bei Verzögerung misst die lineare Zuordnung zwischen den Werten der Zwischenwerte. Daher ist es nur der Koeffizient im linearen Regressionsmodell: Die Eigenschaften der PACF sind äquivalent zu denen des ACF (4.8) - (4.10) und es ist leicht zu beweisen, dass (Box und Jenkins 1976). Wie die ACF hängt die partielle Autokorrelationsfunktion nicht von den Maßeinheiten ab und wird durch ein Balkendiagramm an den nichtnegativen Verzögerungen dargestellt, das als partielles Korrelogramm bezeichnet wird. Die dynamischen Eigenschaften jedes stationären Modells bestimmen eine bestimmte Form der Korrelogramme. Darüber hinaus kann gezeigt werden, dass für jeden stationären Prozess, beide Funktionen, ACF und PACF, nähern sich Null, wie die Verzögerung tendiert zu unendlich. Die Modelle sind nicht immer stationäre Prozesse, daher ist es notwendig, zunächst die Bedingungen für die Stationarität zu bestimmen. Es gibt Unterklassen von Modellen, die besondere Eigenschaften haben, so dass wir sie getrennt studieren. Also, wenn und, es ist ein weißes Rauschen Prozess. Wenn es ein reiner gleitender Durchschnitt der Ordnung ist. , Und wenn es ein reiner autoregressiver Prozess der Ordnung ist. . 4.2.1 Weißes Rauschen Das einfachste Modell ist ein weißes Rauschen, bei dem es sich um eine Folge von unkorrelierten Nullmittelwerten mit konstanter Varianz handelt. Es ist mit bezeichnet. Dieser Prozeß ist stationär, wenn seine Varianz endlich ist, da die Bedingung (4.1) - (4.3) verifiziert wird. Zudem ist die Autokovarianzfunktion nicht korreliert: Abbildung 4.7 zeigt zwei simulierte Zeitreihen, die aus Prozessen mit null Mittelwerten und Parametern und -0.7 erzeugt wurden. Der autoregressive Parameter misst die Persistenz vergangener Ereignisse in die aktuellen Werte. Wenn zum Beispiel ein positiver (oder negativer) Schock positiv (oder negativ) für einen längeren Zeitraum wirkt, der um so größer ist, je größer der Wert von ist. Wenn sich die Serie durch den Wechsel in Richtung der Wirkung, dh einen Schock, der sich positiv auf das Moment auswirkt, mehr grob um den Mittelpunkt bewegt, hat dies negative Auswirkungen auf, positiv. Der Prozeß ist immer invertierbar und er ist stationär, wenn der Parameter des Modells in der Region liegt. Um den stationären Zustand zu beweisen, schreiben wir zuerst die in der gleitenden Durchschnittsform durch rekursive Substitution von in (4.14): Abbildung 4.8: Populationskorrelogramme für Prozesse Dies ist eine gewichtete Summe aus vergangenen Innovationen. Die Gewichte hängen vom Wert des Parameters ab: wann, (oder) der Einfluss einer gegebenen Innovation durch die Zeit zunimmt (oder abnimmt). Erwartungen an (4.15), um den Mittelwert des Prozesses zu berechnen, erhalten wir: Angenommen, das Ergebnis ist eine Summe unendlicher Glieder, die für alle Werte nur dann konvergiert, wenn in diesem Fall. Ein ähnliches Problem erscheint, wenn wir das zweite Moment berechnen. Der Beweis kann vereinfacht werden unter der Annahme, dass, das heißt,. Dann ist Varianz: Wiederum geht die Varianz in unendlich bis auf, in welchem ​​Fall. Es ist leicht zu überprüfen, dass sowohl der Mittelwert und die Varianz explodieren, wenn diese Bedingung nicht hält. Die Autokovarianzfunktion eines stationären Prozesses ist daher die Autokorrelationsfunktion für das stationäre Modell: Das heißt, das Korrelogramm zeigt einen exponentiellen Abfall mit positiven Werten immer, wenn positiv und bei negativ positiven Schwingungen if negativ ist (siehe Abbildung 4.8). Weiterhin nimmt die Abklinggeschwindigkeit ab, je größer der Wert ist, desto stärker ist die dynamische Korrelation im Prozess. Schließlich gibt es einen Cutoff in der partiellen Autokorrelationsfunktion bei der ersten Verzögerung. Abbildung 4.9: Populations-Korrelogramme für Prozesse Es kann gezeigt werden, dass der allgemeine Prozess (Box und Jenkins 1976): Ist nur stationär, wenn die Wurzeln der charakteristischen Gleichung des Polynoms außerhalb des Einheitskreises liegen. Der Mittelwert eines stationären Modells ist. Es ist immer invertierbar für alle Werte der Parameter. Its ACF geht auf null exponentiell, wenn die Wurzeln der realen oder mit Sinus-Cosinus-Welle Fluktuationen, wenn sie komplex sind. Its PACF hat einen Cutoff auf der Lag, das heißt, Korrelokolle für komplexere Modelle, wie z. B. die, sind in Abbildung 4.9 zu sehen. Sie sind den Mustern sehr ähnlich, wenn die Prozesse reale Wurzeln haben, nehmen aber eine sehr unterschiedliche Form ein, wenn die Wurzeln komplex sind (siehe das erste Grafikpaar der Abbildung 4.9). 4.2.4 Autoregressives bewegliches Durchschnittsmodell Das allgemeine (endliche) autoregressive gleitende Durchschnittsmodell von Befehlen ist: Zweck: Überprüfung der Zufallsprinzipien Autokorrelationsdiagramme (Box und Jenkins, S. 28-32) sind ein gängiges Werkzeug zur Überprüfung der Zufälligkeit In einem Datensatz. Diese Zufälligkeit wird durch Berechnen von Autokorrelationen für Datenwerte bei variierenden Zeitverzögerungen ermittelt. Wenn sie zufällig sind, sollten solche Autokorrelationen nahezu null für irgendwelche und alle zeitlichen Verzögerungen sein. Wenn nicht-zufällig, dann werden eine oder mehrere der Autokorrelationen signifikant ungleich Null sein. Darüber hinaus werden Autokorrelationsdiagramme in der Modellidentifikationsstufe für autoregressive, gleitende mittlere Zeitreihenmodelle von Box-Jenkins verwendet. Autokorrelation ist nur ein Maß der Zufälligkeit Beachten Sie, dass unkorreliert nicht unbedingt zufällig bedeutet. Daten mit signifikanter Autokorrelation sind nicht zufällig. Daten, die keine signifikante Autokorrelation aufweisen, können jedoch auf andere Weise noch nicht-zufällig auftreten. Autokorrelation ist nur ein Maß der Zufälligkeit. Im Rahmen der Modellvalidierung (die der primäre Typ der Zufälligkeit ist, die wir im Handbuch behandeln) ist die Überprüfung auf Autokorrelation typischerweise ein ausreichender Test der Zufälligkeit, da die Residuen von schlechten Anpassungsmodellen dazu tendieren, nicht-subtile Zufälligkeit zu zeigen. Einige Anwendungen erfordern jedoch eine strengere Bestimmung der Zufälligkeit. In diesen Fällen wird eine Batterie von Tests, die eine Überprüfung auf Autokorrelation einschließen kann, angewandt, da Daten in vielen verschiedenen und oft subtilen Arten nicht-zufällig sein können. Ein Beispiel dafür, wo eine strengere Überprüfung der Zufälligkeit erforderlich ist, wäre das Testen von Zufallszahlengeneratoren. Beispiel-Diagramm: Autokorrelationen sollten nahe-Null für die Zufälligkeit sein. Dies ist bei diesem Beispiel nicht der Fall, so dass die Zufallsannahme fehlschlägt. Dieses Beispiel-Autokorrelationsdiagramm zeigt, dass die Zeitreihe nicht zufällig ist, sondern vielmehr einen hohen Grad an Autokorrelation zwischen benachbarten und nahe benachbarten Beobachtungen aufweist. Definition: r (h) versus h Autokorrelationsdiagramme werden durch vertikale Achse gebildet: Autokorrelationskoeffizient, wobei C h die Autokovarianzfunktion ist und C 0 die Varianzfunktion ist. Beachten Sie, dass R h zwischen -1 und 1 liegt Folgende Formel für die Autokovarianz-Funktion Obwohl diese Definition weniger Bias aufweist, weist die (1 N) - Formulierung einige wünschenswerte statistische Eigenschaften auf und ist die am häufigsten in der Statistikliteratur verwendete Form. Siehe Seiten 20 und 49-50 in Chatfield für Details. Horizontale Achse: Zeitverzögerung h (h 1, 2, 3.) Die obige Zeile enthält auch mehrere horizontale Bezugslinien. Die Mittellinie ist auf Null. Die anderen vier Zeilen sind 95 und 99 Konfidenzbänder. Beachten Sie, dass es zwei verschiedene Formeln für die Erzeugung der Vertrauensbänder gibt. Wenn das Autokorrelationsdiagramm verwendet wird, um auf Zufälligkeit zu testen (dh es gibt keine Zeitabhängigkeit in den Daten), wird die folgende Formel empfohlen: wobei N die Stichprobengröße ist, z die kumulative Verteilungsfunktion der Standardnormalverteilung und (alpha ) Ist das Signifikanzniveau. In diesem Fall haben die Vertrauensbänder eine feste Breite, die von der Probengröße abhängt. Dies ist die Formel, die verwendet wurde, um die Vertrauensbänder im obigen Diagramm zu erzeugen. Autokorrelationsdiagramme werden auch in der Modellidentifikationsstufe für die Montage von ARIMA-Modellen verwendet. In diesem Fall wird für die Daten ein gleitendes Durchschnittsmodell angenommen und die folgenden Konfidenzbänder erzeugt: wobei k die Verzögerung, N die Stichprobengröße, z die kumulative Verteilungsfunktion der Standardnormalverteilung und (alpha) ist Das Signifikanzniveau. In diesem Fall nehmen die Vertrauensbänder zu, wenn die Verzögerung zunimmt. Das Autokorrelationsdiagramm kann Antworten auf die folgenden Fragen liefern: Sind die Daten zufällig Ist eine Beobachtung, die mit einer angrenzenden Beobachtung in Beziehung steht, ist eine Beobachtung, die mit einer zweimal entfernten Beobachtung zusammenhängt (usw.) Ist die beobachtete Zeitreihe weißes Rauschen Ist die beobachtete Zeitreihe sinusförmig Ist die beobachtete Zeitreihe autoregressiv Was ist ein geeignetes Modell für die beobachtete Zeitreihe Ist das Modell gültig und ausreichend Ist die Formel s ssqrt gültig Wichtigkeit: Sicherstellung der Gültigkeit von technischen Schlussfolgerungen Zufall (zusammen mit festem Modell, fester Variation und fester Verteilung) ist Eine der vier Annahmen, die typischerweise allen Messprozessen zugrunde liegen. Die Zufallsannahme ist aus den folgenden drei Gründen von entscheidender Bedeutung: Die meisten standardmäßigen statistischen Tests hängen von der Zufälligkeit ab. Die Gültigkeit der Testresultate steht in direktem Zusammenhang mit der Gültigkeit der Zufallsannahme. Viele häufig verwendete statistische Formeln hängen von der Zufallsannahme ab, wobei die häufigste Formel die Formel zur Bestimmung der Standardabweichung des Stichprobenmittels ist: wobei s die Standardabweichung der Daten ist. Obwohl stark verwendet, sind die Ergebnisse aus der Verwendung dieser Formel ohne Wert, es sei denn, die Zufälligkeitsannahme gilt. Für univariate Daten ist das Standardmodell Wenn die Daten nicht zufällig sind, ist dieses Modell falsch und ungültig, und die Schätzungen für die Parameter (wie die Konstante) werden unsinnig und ungültig. Kurz, wenn der Analytiker nicht auf Zufälligkeit prüft, dann wird die Gültigkeit vieler statistischer Schlüsse verdächtig. Das Autokorrelationsdiagramm ist eine hervorragende Möglichkeit, auf solche Zufälligkeit zu prüfen.


No comments:

Post a Comment